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Abstract. The aim of this paper is to cover Carl Friedrich Gauss’ life,

mathematical works, and most importantly his contributions to the

resolution of Euclid’s parallel postulate.

1. Biography

Figure 1. Carl Friedrich Gauss (1777 - 1855)

Johann Carl Friedrich Gauss was a German algebraist, geometry enthusiast, num-

ber theorist, and physical scientist. He is often known as “Princeps mathematicorum”

(Latin, “the Prince of Mathematicians”) as well as “the greatest mathematician since

antiquity”. Gauss was born on April 30, 1777 in Brunswick, Germany, to poor, hard
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working, and middle class parents. His father, Gebhard Dietrich Gauss, worked mul-

tiple jobs as a gardner, brick-layer, butcher, sales assistant, and treasurer for a local

company. Though Carl’s father was regarded as an upright and honest man, he was a

harsh father who did not support the idea of his son going to school, with expectations

that Carl would follow one of the family occupations. Carl’s mother, Dorothea Benze

Gauss, was considered a very intelligent woman, but unfortunately illiterate, since

she did not receive education and her main job before marriage was a housemaid.

Carl’s exceptional talent for numbers was shown way back when he was a little

child, as he could calculate before he learned to speak. At just the age of three, he

was able to find errors in his father payroll calculations, and he was checking his dad’s

accounts on a daily basis by the age of five. The most well-known story of Gauss’

gifted math ability is a tale from when he was an elementary student. Carl amazed

his arithmetic teacher with how fast he determined the sum of the first 100 positive

integers. He quickly recognized that there are 50 pairs of numbers, each one of which

adds up to 101, and he got 5050 by taking the product of the number of pairs and

the sum of each pair. [Figure 2]

Figure 2. Gauss’ Famous Arithmetic Problem

Gauss’ math prodigy quickly received the attention of the Duke of Brunswick, who

decided to provide financial support to Gauss and sent him to Brunswick Collegium

Carolinum at the age of fifteen. The Duke then continued to sponsor Gauss as the

young mathematician furthered his studies at the University of Gottingen. Two of

Gauss’ biggest accomplishments (which will be discussed in the next section) hap-

pened after college, during his 20s: proving the Fundamental Theorem of Algebra at



22 and publishing Disquisitiones Arithmeticae at 24. During his career, Gauss also

had strong interest in studying astronomy, statistics, complex numbers, geometry,

and many more areas of mathematics.

Later on in his life, Gauss was appointed as a professor of mathematics and also the

director of the observatory at his alma mater, University of Gottingen. He worked in

this official position until the day he passed away - February 23, 1855.

2. Non-Parallel postulate works

Gauss, without a doubt, is one of the most versatile mathematicians of all time.

He is in the discussion for the title "greatest mathematician of all time", with other

excellent candidates such as Leonard Euler, Isaac Newton, and Archimedes. Gauss

made contributions to almost every area of mathematics that existed during his time,

from pure mathematics fields such as number theory, algebra, analysis and geome-

try, to applied math topics such as statistics and probability theory, astronomy and

magnetism. We are going to take a look at some of Gauss’ greatest mathematical

discoveries and accomplishments.

In 1976, at the age of 19, Gauss achieved his first mathematical triumph by suc-

cessfully figuring out how to construct a heptadecagon - a 17-sided polygon [Figure

3], with the use of a straight edge and a compass.

Figure 3. The Heptadecagon



Gauss’ proof was based on two main ideas, expressing the trigonometric functions

of the common angle in terms of arithmetic operations and square root extractions,

and the odd prime factors of the number of sides of an n-gon are distinct Fermat

primes, which have the form Fn = 22
n
+ 1 for some n ∈ Z+. In order to make a

regular heptadecagon, it requires the value of cos(
2π

17
) in terms of square roots, which

involves a degree 17 (a Fermat prime) equation. [Figure 4]

Figure 4

Shortly after graduated from Gottingen, at the age of 22, Gauss proved what is

now known as the Fundamental Theorem of Algebra. The theorem states that

"Every non-constant single-variable polynomial with complex coeffi-

cients has at least one complex root. This includes polynomials with

real coefficients, since every real number can be considered a complex

number with its imaginary part equal to zero."

At the age of 24, Gauss published the greatest book of his career, Disquisitiones

Arithmeticae. It had a great impact on the field of number theory, which Gauss

once called "the queen of mathematics”, as it paved the path for modern study of

the integers and integer-valued functions. The book consists of seven sections, which

are (I) Congruent Numbers in General; (II) Congruences of the First Degree; (III)

Residues of Powers; (IV) Congruences of the Second Degree; (V) Forms and Indeter-

minate Equations of the Second Degree; (VI) Various Applications of the Preceding

Discussions; and (VII) Equations Defining Sections of a Circle. The 7 sections are

subdivided into 366 numbered items - theorems with proof, or author’s remarks and

thoughts.



Figure 5. Disquisitiones Arithmeticae

In addition to pure mathematics, Gauss also contributed to the area of probability

and statistics. Gauss introduced what is now known as Gaussian (normal) distribu-

tion, the Gaussian function and the Gaussian error curve. He showed how probability

could be represented by a bell-shaped or “normal-ish” curve. The highest point on

the curve represents the most probable event in a series of data (i.e. the mean or

expected value), while all other possible occurrences are equally distributed around

the mean value, creating a downward-sloping curve on each side of the peak.

Figure 6. Normal distribution curve and density function



3. Parallel postulate contributions

3.1. A brief overview of the Parallel Postulate

Euclidean Geometry is the intuitive geometry that we naturally think about the

world. However, there also exists a few other not as widely known, but about as

important geometries that also have many applications in the world and the universe.

These other geometries are different from our regular geometry due to the nature of

parallel lines. Euclid’s fifth postulate states that:

“If a straight line falling on two straight lines make the interior angles

on the same side less than two right angles, the two straight lines, if

produced indefinitely, meet on that side on which are the angles less

than the two right angles.”

Postulate V is also commonly called the Parallel Postulate because it is equivalent

to the following statement:

“For every line l and for every point P that does not lie on l, there is

exactly one line m such that P lies on m and m is parallel to l.”

Unlike the first four postulates, -

1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a straight line.

3. To describe a circle with any center and radius.

4. All right angles are equal to one another.

- it is very obvious to mathematicians, including Euclid, that there is something odd

and unclear about this fifth postulate. In his greatest mathematics book Elements,

Euclid actually avoided using the fifth postulate until Proposition 29. The first four

were simple statements that few would feel uncertain about. On the other hand,

the fifth postulate was far from being directly self-evident and somewhat difficult to

interpret.

"If a straight line falling on two straight lines..."



Figure 7

"...make the interior angles on the same side less than two right angles,..."

Figure 8

"...the two straight lines, if produced indefinitely, meet on that side on which are

the angles less than the two right angles."

Figure 9

For decades and centuries, a number of geometry devotees have attempted to show

that Postulate V is the consequence of the first four postulates. However, it turns

out that this postulate determines whether we are in Euclidean or non-Euclidean

geometry. Euclidean geometry is the study of geometry that satisfies all of Euclid’s

axioms, whereas a geometry where the parallel postulate does not hold is called non-

Euclidean. Some of the main forerunners of non-Euclidean geometry include Giovanni

Gerolamo Saccheri, Johann Heinrich Lambert, Adrien-Marie Legendrre, Janos Bolyai,

Nikolai Ivanovich Lobachevsky, and of course, our very own Carl Friedrich Gauss.



3.2. Gauss and the Parallel Postulate

It is a mistake to start this section by not mentioning that it was Carl Friedrich

Gauss who invented the term "Non-Euclidean Geometry." He devoted three decades

of his life to the studies of parallels theory. His interest in studying this problem

began from the very beginning of the 19th century.

One year before the start of the 1800s, in a letter to Wolgang (Farkas) Bolyai,

Gauss mentioned that he had attempted to work on the Parallel Postulate problem:

“I am sorry that I didn’t use our former close proximity to learn more

about your work on the first principles of geometry; I would surely

have spared myself considerable wasted effort and have become more

tranquil, insofar as this is possible for someone like me when there is so

much to be desired in this [geometry] situation. I myself have moved

far ahead in my work on this (considering that my other heterogeneous

tasks leave little time); the path that I have hammered out does not so

much lead to the goal that one hopes for, and which you have secured,

but much more it makes the truth of geometry dubious. To be sure, I

have found much that would qualify as a proof for most [that Euclidean

geometry is correct], but which in my eyes really proves nothing; for

example, if one could prove that a straightedged triangle exists whose

area would be greater than that of a given region, then I would be in

the position to rigorously justify the whole of geometry. Most people

would accept the former as an axiom; not me; it could be possible that

no matter how far apart the vertices of a triangle are assumed to be,

still the area would remain under a given bound, however far apart the

three angular points of the triangle were taken. I have several such

results, but in none of them can I find anything satisfactory.”

In 1824, Gauss wrote a letter to his friend Franz Adolf Taurinus, in which he

mentioned that



“The assumption that the angle sum [of a triangle] is less than 180

degree leads to a curious geometry, quite different from ours but thor-

oughly consistent, which I have developed to my entire satisfaction.

The theorems of this geometry appear to be paradoxical, and, to the

uninitiated, absurd, but calm, steady reflection reveals that they con-

tain nothing at all impossible.”

Even though Gauss is deeply interested in the topic of parallels, he never published

anything. He only discussed very little detail of his work with his trusted friends,

as shown by the following excerpt from a letter of Gauss to Heinrich Schumacher in

1831:

“In the last few weeks I have begun to put down a few of my Medita-

tions [on parallels] which are already to some extent nearly years old.

These I had never put in writing, so that I have been compelled three

or four times to go over the whole matter afresh in my head. Also I

wished that it should not perish with me.”

Gauss kept his clear view of a geometry that is independent from Postulate V a

secret for almost half of a century, and it was only revealed after Nikolai Lobachevsky

and Janos Bolyai announced their works on the same topic. In a letter to Janos

Bolyai’s father, Wolfgang Bolyai, Gauss stated that he has studied the same parallels

problem for a very long time and provided enough evidence to show that he actually

had worked out all the proofs and other details:

“If I start by saying I cannot praise it then you will most likely be taken

aback; but I cannot do otherwise; to praise it would be to praise myself;

the entire contents of the work, the path that your son has taken and

the results to which it leads, are almost perfectly in agreement with

my own meditations, some going back 30 - 35 years. In truth I am

astonished. My intention was not to release any of my own work in my

lifetime. Most people don’t have a true sense of what is involved, and

I have found very few who are particularly interested. To appreciate



what is going on one must first of all have a real grasp of what is

missing, and on this point most are in the dark. On the other hand

it was my intention to write everything down so that it did not perish

with me.”

Gauss’ definition of two parrallel lines is

“If the coplanar straight lines AM and BN do not intersect each other,

while, on the other hand, every straight line through A between AM

and AB cuts BN , then AM is said to be parallel to BN .” [Figure 10]

Figure 10

According to Gauss, there are two types of lines that begin from A and extending

to the right: those that intersect BN and those that do not. If we construct these

lines by extending AB upwards and rotating it around A clockwise, then the first

line that does not intersect BN is parallel to BN . His reason was there can only

be a unique position separating the lines which intersect BN from those that do

not intersect it. This must be the first of the lines, which do not cut BN , and by

definition, it is the parallel AM , since there cannot be no last line of the set of lines

which intersect BN .

Gauss then went on to prove that “the parallelism of the line AP to the line BQ is

independent of the points A and B, provided the sense in which the lines are to be

produced indefinitely remain the same.” He used three cases to prove this result:

• Case 1: If A is fixed and let B′ ∈ BN (B′ 6= B), then we get the same parallel

AM .



• Case 2: [Figure 11] Let A′ ∈ AM where A∗A′ ∗M and A′ 6= A, and construct

a line A′P that lies between A′B and A′M . Then let Q ∈ A′P where A′∗Q∗P ,

and construct line AQ. By definition, AQ and BN must intersect, thus this

also means QP and BN must intersect. Thus the line that A,A′,M lie on is

the first of the lines that do not intersect BN , and so A′M //BN .

Figure 11

• Case 3: [Figure 12] If A′ ∗ A ∗ M , we also construct a line A′P that lies

between A′B and A′M . Let Q ∈ A′P such that P ∗ A′ ∗ Q. Then QA and

BN must intersect by definition. Let QA ∩ BN = R. Thus A′P belongs to

the interior of the closed figure A′ARB, and it must intersect one of the sides

A′A,AR,RB, and BA′. Clearly that one side must be RB, and thus A′M //

BN .

Figure 12

Another result that Gauss proved is the Reciprocity of Parallelism, which stated

that “If AM // BN , then BN // AM .” To prove this, we first drop a perpendicular

from B to AM , and call the foot A. Construct a line BN ′ between BA and BN . On



the same side of AB as BN ′, construct ∠ABC such that µ(∠ABC) =
1

2
µ(∠N ′BN).

Then we have two cases to consider:

• Case 1: BC and AM intersect. [Figure 13]

Let BC ∩ AM = D. Let E ∈ DA such that AE = AD (and D*A*E),

and construct ∠BDF ∼= ∠BED. Then DF and BM must interest, say at G,

since AM //BN . Let H ∈ EM such that E ∗H ∗M and EH = DG. Then it

is obvious that 4BAD ∼= 4BAE by SAS, thus BE ∼= BD. Now 4BEH ∼=

4BDG by SAS, and it follows that ∠EBH ∼= ∠DBG, or ∠EBD ∼= ∠HBG.

But ∠EBD ∼= ∠N ′BN , and this means that BN ′ and BH coincide, which

also means N ′ = H. Thus BN ′ and AM must intersect, and since BN ′ is a

line through B between BA and BN , we have BN //AM , by Gauss’ parallels

definition.

Figure 13

• Case 2: BC and AM do not intersect. [Figure 14]

Let D ∈ AM . Using the same argument as the previous case, we have

∠EBD ∼= ∠GBH. Since µ(∠ABD) < µ(∠ABC), we get µ(∠EBD) <

µ(∠N ′BN), and thus µ(∠GBH) < µ(∠N ′BN). Therefore BN ′ and AM

must intersect. Since BN ′ is a line through B between BA and BN , we have

BN //AM , by Gauss’ parallels definition.



Figure 14

Hence in both cases we have shown that if AM //BN , then BN //AM .

Gauss also showed the transitivity of parallels, which is that “If line (1) // line (2)

and line (1) // line (3), then line (2) // line (3). This proof is divided into 2 cases:

• Case 1: (1) lies between (2) and (3) [Figure 15]

Let A ∈ (2), B ∈ (3), and AB ∪ (1) = C. Construct a line AD between AB

and (2). Then AD must intersect (1), and it would also intersect (3) if we

extend it. Thus (2) // (3)

Figure 15

• Case 2: One of (2), (3) lies between (1) and the other [Figure 16]

Suppose (2) lies between (1) and (3) and (2) is not parallel to (3). Then for

any point on (3), we can construct a line (3’) different from (3) that is parallel

to (2). By the first case, (3’) // (1), which is impossible. Thus (2) // (3)



Figure 16

Another important parallel ideas Gauss investigated in was corresponding points

on two parallel lines, which is defined as “two points A and B are said to correspond

when AB makes equal internal angles with the parallels on the same side.” [Figure

17]

Figure 17

He also came up with the following theorems regarding corresponding points:

1. If A and B are two corresponding points upon two parallels, and M is the

midpoint of AB, then the line MN , perpendicular to AB, is parallel to the two given

lines, and every point on the same side of MN has a closer distance to A than B.

2. If A and B are two corresponding points upon the parallels l and m, and A′,

B′ are two other corresponding points on the same lines, then AA′ = BB′, and

conversely

3. If A, B, C are three points on the parallels l, m, and n, such that A and B, B

and C, correspond, then A and C also correspond.



David Hilbert once claimed that "The most suggestive and notable achievement

of the last [19th] century is the discovery of non-Euclidean geometry." It would be

difficult to overestimate the importance of Gauss’ contributions to the study of this

topic, as his significant results showed the existence of more than one consistent

geometry. Gauss was a key player of the first period in the history of non-Euclidean

geometry, and his and other mathematicians’ works in this era had paved the way

for more studies and discoveries in the second non-Euclidean geometry period, with

major names like Bernhard Riemann, Hermann von Helmholtz, Sophus Lie, and

Eugenio Beltrami.
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"Mathematics is the queen of the sciences - and number theory is the queen of

mathematics."


